

Research on *adaptive* interface assertion enforcement.

Target

- ▶ Scientific applications built of components
 - Well-defined interfaces

Focus

- ► Demonstrating correctness during deployment
- Plug-and-play components

Goal

► Maximize failure detection within performance overhead constraints

Adapted from "Improving Scientific Software Component Quality Through Assertions," SE-HPCS '05.

2

Reliance on components will exacerbate correctness concerns.

Risks include...

- **►** Misuse
 - Third-party
 - Binary
- **▶** Complexity
 - Different implementation languages
- **▶** Untested features
 - Unanticipated input data
 - Poorly tested paths

Executable assertions will become increasingly important.

In order to be effective, need heuristics to guide enforcement.

- "Typical" interface assertions?
- Which types are important/critical?
 - ► Corrupt data
 - ►Invalidate results
- Which types lead to component assembly failures?

Suggestions, questions, or components?
Please contact me at dahlgren1@llnl.gov or (925) 423-2685.

12

Adaptive Enforcement of Interface Assertions

The End